Tag Archives: android

Rendering UI transitions on mobile

I was implementing a kind of defocus blur transition effect between two UI screens and came up with the following shader:

/// viewport resolution (in pixels) in .xy and inverse resolution in .zw
uniform vec4  u_Resolution;       
/// 0...1
uniform float u_TransitionValue;  
/// virtual pixel size
uniform float u_PixelSize;        
uniform sampler2D Texture0;      
uniform sampler2D Texture1;      
out vec4 out_FragColor;
void main(void)
{
	float T = u_TransitionValue;
	float S0 = 1.0;
	float S1 = u_PixelSize;
	float S2 = 1.0;
	// 2 segments, 1/2 each
	float Half = 0.5;
	float PixelSize = ( T < Half ) ? mix( S0, S1, T / Half ) : mix( S1, S2, (T-Half) / Half );
	vec2 D = PixelSize * u_Resolution.zw;
	vec2 UV = (gl_FragCoord.xy * u_Resolution.zw);
	// 12-tap Poisson disk coefficients:
	// https://github.com/spite/Wagner/blob/master/fragment-shaders/poisson-disc-blur-fs.glsl
	const int NumTaps = 12;
	vec2 Disk[NumTaps];
	Disk[0] = vec2(-.326,-.406);
	Disk[1] = vec2(-.840,-.074);
	Disk[2] = vec2(-.696, .457);
	Disk[3] = vec2(-.203, .621);
	Disk[4] = vec2( .962,-.195);
	Disk[5] = vec2( .473,-.480);
	Disk[6] = vec2( .519, .767);
	Disk[7] = vec2( .185,-.893);
	Disk[8] = vec2( .507, .064);
	Disk[9] = vec2( .896, .412);
	Disk[10] = vec2(-.322,-.933);
	Disk[11] = vec2(-.792,-.598);
	vec4 C0 = texture( Texture0, UV );
	vec4 C1 = texture( Texture1, UV );
	for ( int i = 0; i != NumTaps; i++ )
	{
		C0 += texture( Texture0, Disk[i] * D + UV );
		C1 += texture( Texture1, Disk[i] * D + UV );
	}
	C0 /= float(NumTaps+1);
	C1 /= float(NumTaps+1);
	out_FragColor = mix( C0, C1, T );
}

I get wrong results with this fragment shader on some mobile GPUs. For example, Andreno 330 on LG Nexus 5 gives just a series of shifted images instead of blur. Google Nexus 10 runs it just fine. Anyway, I will have to investigate it a bit later.

Omnidirectional shadows and VSDCT on OpenGL ES 3

Recently we have ported all the parts of our shading pipeline to OpenGL ES 3. The last piece of the puzzle was a decent implementation of omnidirectional shadow maps. We used a Virtual Shadow Depth Cube Texture (VSDCT) described in ShaderX3.

Here is a simple code snipped I wrote to convert cube map vec3 into a virtual texture vec2:

vec2 GetShadowTC( vec3 Dir )
{
	float Sc;
	float Tc;
	float Ma;
	float FaceIndex;

	float rx = Dir.x;
	float ry = Dir.y;
	float rz = Dir.z;

	vec3 adir = abs(Dir);
	Ma = max( max( adir.x, adir.y ), adir.z );

	if ( adir.x > adir.y && adir.x > adir.z )
	{
		Sc = ( rx > 0.0 ) ? rz : -rz;
		Tc = ry;
		FaceIndex = ( rx > 0.0 ) ? 0.0 : 1.0;
	}
	else if ( adir.y > adir.x && adir.y > adir.z )
	{
		Sc = rx;
		Tc = ( ry > 0.0 ) ? rz : -rz;
		FaceIndex = ( ry > 0.0 ) ? 2.0 : 3.0;
	}
	else
	{
		Sc = ( rz > 0.0 ) ? -rx : rx;
		Tc = ry;
		FaceIndex = ( rz > 0.0 ) ? 4.0 : 5.0;
	}

	float s = 0.5 * ( Sc / Ma + 1.0 );
	float t = 0.5 * ( Tc / Ma + 1.0 );

	s = s / 3.0;
	t = t / 2.0;

	float Flr = floor(FaceIndex / 3.0);
	float Rmd = FaceIndex - (3.0 * Flr);

	s += Rmd / 3.0;
	t += Flr / 2.0;

	return vec2( s, t );
}

The distance from the light source is packed into a 8-bit RGBA texture using this trick. Everything else is pretty straightforward.

Android demo (requires OpenGL ES 3).

Embedding precompiled .APK into Android ROM

There a lot of tutorials out there on how to build your own Android ROM from sources and how to integrate your application into the build process. However, there are very few clean instructions on how to put your own precompiled .apk into the ROM. Here is how (I assume you have an Android working tree ready):

  1. Create a folder for your app: packages/apps/<your-app-name>
  2. Put your .apk into the packages/apps/<your-app-name>/<your-app-name>.apk
  3. Create the Android.mk file just next to it. Is should contain:
LOCAL_PATH := $(call my-dir)include $(CLEAR_VARS)
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := <your-app-name>;
LOCAL_CERTIFICATE := PRESIGNED
LOCAL_SRC_FILES := $(LOCAL_MODULE).apk
LOCAL_MODULE_CLASS := APPS
LOCAL_MODULE_SUFFIX := $(COMMON_ANDROID_PACKAGE_SUFFIX)
include $(BUILD_PREBUILT)

Now Android build system will recognize the package with your application. To include it into the ROM add <your-app-name> to the PRODUCT_PACKAGES variable for a desired target configuration. I.e. in build/target/product/full_base.mk.

Build the ROM as usual and you will have your precompiled application embedded into it.

If you have native C++ library inside your .apk, you should unpack it manually, put into the packages/apps/<your-app-name> folder and describe it in Android.mk:

include $(CLEAR_VARS)
LOCAL_IS_HOST_MODULE:=
LOCAL_MODULE_CLASS:=SHARED_LIBRARIES
LOCAL_MODULE_TAGS:=optional
OVERRIDE_BUILT_MODULE_PATH:=$(PRODUCT_OUT)/obj/lib
LOCAL_UNINSTALLABLE_MODULE:=
LOCAL_SRC_FILES:=<your-library.so>
LOCAL_BUILT_MODULE_STEM:=<your-library.so>
LOCAL_STRIP_MODULE:=
LOCAL_MODULE:=<your-library>
LOCAL_MODULE_STEM:=<your-library.so>
LOCAL_CERTIFICATE:=
LOCAL_MODULE_PATH:=$(PRODUCT_OUT)/system/lib
LOCAL_REQUIRED_MODULES:=
LOCAL_SHARED_LIBRARIES:=
include $(BUILD_PREBUILT)

Add it as a dependency to your prebuilt .apk package:

LOCAL_REQUIRED_MODULES := <your-library>

The library will be copied to the system/lib folder of the target ROM.

Vertex Array Object (VAO) on Android

Always wanted to put my hands on an OpenGL ES 3 Android device. Here are the results of testing VAO on Google Nexus 10 (Android 4.3 with OpenGL ES 3) and Samsung Galaxy Nexus (Android 4.3 with OpenGL ES 2 and OES_vertex_array_object extension).

1. First, the old Samsung Galaxy Nexus. 
The extensions list claims the OES_vertex_array_object extension is supported. So, I load the entry points:

#define BIND_EXT( VarName, Type, Bind1, Bind2 )\
        VarName = (Type)GetGLProc( API, Bind1 );\
        if ( !VarName ) VarName = (Type)GetGLProc( API, Bind2 );
BIND_EXT( API->glBindVertexArray,
          PFNGLBINDVERTEXARRAYPROC,
          "glBindVertexArray", "glBindVertexArrayOES" );
BIND_EXT( API->glDeleteVertexArrays,
          PFNGLDELETEVERTEXARRAYSPROC,
          "glDeleteVertexArrays", "glDeleteVertexArraysOES" );
BIND_EXT( API->glGenVertexArrays,
          PFNGLGENVERTEXARRAYSPROC,
          "glGenVertexArrays", "glGenVertexArraysOES" );

Just in case, I check for the presence of actual functions.

bool IsVAOSupported = API->glBindVertexArray &&
                      API->glDeleteVertexArrays &&
                      API->glGenVertexArrays;

It looks fine, so we start rendering using VAO in hope everything will go as expected. Nope, it doesn’t:

E/libEGL: called unimplemented OpenGL ES API.

Pfff, stop saying “Yes, we support VAO!”.

2. Here goes the Google Nexus 10 (with an awesome 2560×1600 10-inch touchscreen).

I/LEngine: OpenGL version   : OpenGL ES 3.0
I/LEngine: OpenGL vendor    : ARM
I/LEngine: OpenGL renderer  : Mali-T604
I/LEngine: GLSL version     : OpenGL ES GLSL ES 3.00

VAO just works using the same code path, which is used on a desktop OpenGL 3.2.